Flexible Hybrid Electronics in The Digital Industrial World

September 28, 2020

Nancy Stoffel--GE Research

GE Research

SEE the future MOVE the future **CREATE** the future

© 2020 General Electric Company - All rights reserved

GE 's Digital Industrial Portfolio

Power Renewable Energy

Aviation

Healthcare

- More than 500 Manufacturing Sites globally
- Customers in over 150 countries
- ~200k Employees

Flexible Hybrid Electronics (FHE): set of technologies focused on integration of sensing, communication, and computational elements to create flexible or conformable electronic assemblies that can adapt to a multitude of geometric and environmental constraints.

FHE: ELEMENTS FOR SUCCESS

Flexible Hybrid Electronics- What Can it Enable?

"Electronics on Everything"

- products that fit the natural forms of our world
- Soft, electronic interfaces on /in body
- Sensing systems designed for their environment through materials and design
- Large format sensing & communication systems

Application Areas:

- Wearables/Implantables for Healthcare
- Wearables for Workers
- Enhanced mechanical edge sensing for GE Products
- Electronics and Sensing Integrated with Structure
- Smart Tracking for Manufacturing, Inventory, Service
- Soft Robotics
- Sensing of prosthetic arm to give sensory feedback

What's in it for GE:

- Size weight and power reduction 1/10 size
- 80% reduction in part complexity
- Digital Scaleable Manufacturing
- >10 X cost reduction

-NON-PUBLIC-GENON-PUBLIC- Reliability enhancement

Investment in FHE : A National Priority for Manufacturing Development

Manufacturing USA

- A network of regional institutes, each with a specialized technology focus.
- Secure the future of manufacturing in the U.S. through innovation, collaboration, workforce development, and education.

- Focused on FHE
- \$75M DOD Invest over 5 years
- Lead: Flextech Alliance, AFRL, ARL
- NYS ESD Match through Binghamton
 University

NEXTFLEX AND FLEXIBLE HYBRID ELECTRONICS

NextFlex is leading a consortium of 100 • members across the US to develop and mature this new form of electronics based on additive manufacturing and incorporation of thin, bare die.

Change in Form Factor of Sensors: Rigid to Flex to Soft

BrainGate Neural Interface enable control of robotic

http://www.terasemmovementfoundation.com

Soft electronic implants for low profile chronic Implantation

COMPONENTS of FUTURE FACTORIES

BRILLIANT FACTORY

- Modern Design Practices
- Manufacturing Production Planning
- Production Process Optimization

PEOPLE- ONEHS Digital

- Safety
- Productivity

Ongoing Field Support -PREDIX

- SHM
- PHM
- Optimized Control for Efficiency or Life
- Feedback to Design and Manufacturing

COMPONENTS of FUTURE FACTORIES

BRILLIANT FACTORY

- Modern Design Practices
- Manufacturing Production Planning
- Production Process Optimization

PEOPLE- ONEHS Digital

• Safety

•

Productivity

Ongoing Field Support

- SHM
- PHM
- Optimized Control for Efficiency or Life
- Feedback to Design and Manufacturing

The rise of robots, automation, data analytics and additive technologies are transformative

Brilliant Factory

21st Century Assembly Line for Smart Manufacturing

Advanced Manufacturing Transforms the Entire Value Chain

Industrial Internet meets manufacturing

10-50% cost out 20-70% ↓ cycle time 10-50% ↑ yield

VIRTUAL DESIGN & MANUFACTURING

- Should-cost
- Producability advisors
- Virtual manfacturing
- Collaboration

2-4X ↓ cycle time 50-70% ↑ intros 2X yield

SMART FACTORIES

Sensor Enabled Automation

- Novel process prototyping
- Informatics
- Model-based manufacturing
- Condition Based Maintenance
- In Line Inspection
- Process Optimization

Factory Optimization

- Tracking of parts, product
- Real time optimized factory and optimized system design
- Bottleneck detection
- Data-driven manufacturing models

7-15% ↓inventory 3-5X predictability 40% ↓ downtime

SUPPLY CHAIN OPTIMIZATION

- Real-time analytics
- Visibility
- Predictive maintenance
- Connected systems

Challenges of Renewables Manufacturing

performance, asset life, weather, wildlife

FHE Enabled Cradle to Grave Composite Structural Health Monitoring

A scalable network of passive sensing patches that can be embedded or placed on composite structures and provide input on process during

Temp, strain, dielectric measurements inform:

- Infusion process
- Cure process
- Prevent rework

Sensor embedded into or onto composite

Sensor Embedded into Structural Composite for Operation

Sensors provide state awareness enabling:

- closed loop operational control
- structural health monitoring
- reduce costs and improve safety.
- Many applications possible

Passive Sensor Advantages

- Simple, low profile sensor
- Inexpensive
- No battery or wiring required
- Relieves Lightning strike issues
- Eliminates complexity of wiring
- Reader can be integrated into structure
- Very large dynamic range of measured strain (5-10,000+ ustrain)
- Rugged operability near conductors and/or clutter
- Easy integration with "zero-power" backscattering techniques

Printed RF Systems

Interconnect, Passives and Embedded Die Nextflex PC1.0 & 3.2

Embedded die performance to >25Ghz

PC1.0- Topside Print Only

Enables: Lower Cost Digital Design = Quick Turn Affordable Antenna in Package Affordable Ultrathin Packaging Conformal Active Arrays Deployable Arrays

PC 3.2- Double side printed RF circuitry with printed vias and embedded die -CONFIDENTIAL-

Industrial Equipment Maintenance: Multi-parameter oil health sensing

Value proposition of GE solution

- Independent quantitation of oil aging and external contaminants by sensor design + analytics
- Electrical resonant sensor for early diagnostics of industrial fluids

Limitations of existing sensors

- × Poor sensitivity prevents prognostics
- Cannot discriminate oil aging (total acid number, TAN) vs external contaminants (water, fuel)

Asset Monitoring for Optimized Operations in Aviation Extending to Industrial Use through FHE SAV

TOOTH RELATION

Measuring Torque allows optimized operations, and extended life

OC 1.0 Peel and Stick Sensor on Asset Wider Adoption, Scalable, Reliable Rotating or reciprocal shafts

- >2X improvement in G capability
- 70% profile reduction
- >10X increase in asset size supported
- Reduce Assembly steps from 19 to 4
- Reduce part count by 80%
- Reduce Shaft Rework by 20%
- Reduce qualification costs & time by 80%
- Reduce NRE time by 50%

SAW Torque Sensor

- passive: no battery or wired power
- Improved accuracy
- Only sensors in harsh zone
- Electronics in benign zone
- Low Mass –does not affect engine dynamics

Developed for Helicopter Engine Program for Military Use

- Requires Torque sensing with >1.5% accuracy
- SAW method ~ 2X as accurate as previous solutions
- 3.5 lbs wt savings
- Eliminates 9% of unplanned engine removals

PRINTING ON 3D SURFACES: CREEP SENSOR IN POWER

- 3D Sensors Condition-Based Maintenance
 - Fully Automated Robotic WorkCells
 - Printing Serialized Strain Sensors
 - Collected Data Analyzed on GE Predix Cloud
 - Few dollars to print, potentially saves \$10,000's in reducing maintenance Costs
 - Production Capacity: ~1 Million Sensors/year

COMPONENTS of FUTURE FACTORIES- Focus on People

BRILLIANT FACTORY

- Modern Design Practices
- Manufacturing Production Planning
- Production Process Optimization and Control

PEOPLE- ONEHS Digital

- Safety
- Productivity

TESTING/Quality Assurance

Ongoing Field Support

- SHM
- PHM
- Optimized Control for Efficiency or Life
- Feedback to Design and Manufacturing

5 Year Digital EHS Roadmap- Industrial Safety

Cccupational Safety System Digital Platform

Occupational Safety Wearable: Voltage Sensing Wristband Designed to Ale Users of AC Voltage Sources

A wristband that:

- Senses and alerts user to the presence of electrical fields
- "Wear and Forget"
- Supplement to safety procedures and LOTO
- Prevents incidents and accidents
- Designed as added safety function for service and repair
- May be useful for first responders
- Power consumption/battery life: >16 hours
- Rechargeable
- User adjustable Sensitivity Settings
- Omnidirectional Detection
- Sensitivity: min 80cm @110 VAC
- Voltage to detect : Required 100 VAC to >1kVAC
- Frequencies: 50Hz, 60 Hz
- Alert mode: audible, visible, vibratory
- Sensitivity Adjustment
- Next Generation Band has:
 - Wifi/Bluetooth connection to allow notification and mapping
 - Worker Down Function

Main available sensors for gaseous pollutants

Designs of resonant RF and RFID sensors

Potyrailo, Chem. Rev. 2016

Exploring fundamental capabilities of multivariable RF and RFID sensors for diverse applications

Potyrailo, Naik, Annu. Rev. Mater. Res. 2013

Gas sensors for occupational safety: CH₄

Statistics of sensor performance

Robots for Dangerous and Repetitive Tasks

- **Factory and Field Deployment of Robots and Drones**
- Deploying a companion robot with a human worker
- Augmenting the worker with an exoskeleton
- Utilizing robots and drones for inspection of factories
- Approach depends upon hazardous the task is and how you need the human brain involved in the process.

Soft robotics for manufacturing and industrial services

- Unique capabilities of soft robots for delicate manipulation, environmental compliance, confined navigation, variable stiffness, reconfigurability and self healing.
- Transformational productivity improvements possible for industrial services:
 - On-wing maintenance & repair for the \$80 billion Aviation MRO industry.
 - In-situ repairs for large industrial assets, reducing outage duration & cost
 - Automated handling of delicate products for agriculture and e-commerce order fulfillment (\$5 trillion industry by 2021.)
 - Active exosuits for human capacity augmentation on the shop floor.
- Major advancements will be needed to make fabrication of soft robots accessible, reliable and scalable.

- GE application examples

Aircraft Engine Coating Restoration Soft Robot

Aircraft Engine Shroud Inspection and Spray Device

Gas Turbine Hot Gas Path Inspection Flexible Robot

Flexible Snake Robots for Inspection and Repair

* Flexible sensors for strain, temperature, radiation, force, cracks, chemical concentration, contact, etc. Flexible batteries, microcontrollers and interconnects. Flexible actuators for movement, heat, light and sound.

Adoption of Industrial Digital Technologies in Manufacturing

- Faster more predictable cycle times
- Higher quality
- Lower cost

FHE Technologies well suited for

- Tracking
- "cradle to grave" sensing of asset
- Single use sensors
- Wearable technology for digital assist, hazard identification, biometric assessment
- Robotic assist to augment human capabilities
- Soft Robotics for service, repair, inspection, remanufacturing
- Light weight sensors on inspection robots