Fabrication of Superconducting Devices for Quantum Information Science

CNF Project Number: 1873-10
Principal Investigator: Britton L.T. Plourde
Users: Matthew Hutchings, Jaseung Ku, Yebin Liu

Affiliation: Department of Physics, Syracuse University
Primary Source of Research Funding: Intelligence Advanced Research Projects Agency
Contact: bplourde@syr.edu, mdhutc01@syr.edu, jku102@syr.edu, yliu166@syr.edu
Website: http://plourdelab.syr.edu
Primary CNF Tools Used: ASML, JEOL 9500, PlasmaTherm 720/740

Abstract:
We are fabricating nanoscale superconductor tunnel junctions and microwave resonators for investigations in quantum information science. Such circuits have shown great promise in recent years for forming qubits, the elements of a quantum computer. We are developing architectures involving multiple superconducting qubits and microwave resonators. This involves a combination of photolithographic processing and etching of large-scale features and electron-beam lithography for the tunnel junctions.

Summary of Research:
In recent years, circuits composed of nanoscale Josephson junctions have emerged as promising candidates for the foundational element of a quantum computer, due to the low intrinsic dissipation from the superconducting electrodes and the possibility of scaling to many such qubits on a chip [1]. The quantum coherent properties of the circuits are measured at temperatures below 50 mK with manipulation of the qubit state through microwave excitation.

We are working to develop architectures involving multiple superconducting qubits coupled to multiple low-loss microwave resonators [2-4]. We probe the coupling between each qubit and resonator by measuring the dispersive shift of the resonator frequency with the qubit detuned from the resonator. Some of our experiments are aimed at developing qubit designs that have reduced sensitivity to low-frequency magnetic flux noise that can lead to decoherence [2]. We are also investigating alternative qubit designs [3] that may lead to more efficient two-qubit gates for generating entanglement between circuits [4].

We pattern these circuits at the CNF with nanoscale structures defined with electron-beam lithography integrated with photolithographically defined large-scale features on Si and sapphire substrates. The junctions are fabricated using the standard double-angle shadow evaporation technique, in which a resist bilayer of copolymer and PMMA is used to produce a narrow PMMA airbridge suspended above the substrate. Evaporation of aluminum from two different angles with an oxidation step in between forms a small Al-AlOx-Al tunnel junction from the deposition shadow of the airbridge. We have developed a process for defining these junctions with electron-beam lithography on the JEOL 9500 and we perform the aluminum evaporations in a dedicated vacuum chamber at Syracuse. We pattern large-scale features using the ASML, with sputter deposition of superconducting Nb films in a dedicated vacuum system at Syracuse University. Microwave measurements of these circuits are performed in cryogenic systems at Syracuse University, including dilution refrigerators for achieving temperatures below 30 mK.

References:
2016–2017 Research Accomplishments

Physics & NanoStructure Physics

Figure 1: Optical micrograph of chip containing six superconducting qubits, each of which is coupled to a coplanar waveguide readout resonator for microwave measurements through a common feedline along the center of the image.

Figure 2: Optical micrograph of Al superconducting qubit loop with Nb on-chip bias lead and ground plane.

Figure 3: Optical micrograph of Al-AlOx-Al superconducting tunnel junctions and leads coupled to Nb capacitor pads.

Figure 4: Scanning electron micrograph of Al-AlOx-Al tunnel junction for superconducting qubit; electron-beam lithography performed on JEOL9500.