Fabrication of Nanoscale Josephson Junctions for Quantum Coherent Superconducting Circuits

CNF Project # 1735-08
Principal Investigator(s): Britton L. T. Plourde
User(s): Michael DeFeo, Chunhua Song

Affiliation(s): Physics Department, Syracuse University
Primary Research Funding: Defense Advanced Research Projects Agency, Syracuse University
Contact: bplourde@phy.syr.edu, mpdefeo@syr.edu, csong@syr.edu
Contact: http://www.phy.syr.edu/~bplourde

Abstract:
We fabricate nanoscale superconductor tunnel junctions for experiments involving quantum coherent circuits. Such circuits have shown great promise in recent years for explorations of quantum mechanics at the scale of circuits on a chip and for forming qubits, the elements of a quantum computer. The superconducting qubit, where the entire device has two fundamental basis states, can be manipulated with resonant radiation and placed in a quantum superposition of the basis states. Success in this area requires a fabrication process for making nanoscale junctions reproducibly with an architecture that allows for the placement of many qubits on a chip.

Summary of Research:
The unique properties of nanoscale Josephson junctions enable a wide range of novel superconducting circuits for investigations in many diverse areas. One such circuit, the superconducting flux qubit, has emerged as a promising candidate for the element of a quantum computer, due to the low intrinsic dissipation from the superconducting electrodes and the possibility of scaling to many such qubits on a chip [1-3]. This circuit consists of a thin-film superconducting loop interrupted by several Josephson tunnel junctions. When the applied magnetic flux is adjusted within a certain range and the temperature is below ~ 50 mK, these circuits have two states, corresponding to opposite senses of the screening supercurrent. Resonant microwave radiation drives transitions between the two states and microwave pulses of well-defined lengths can be used to generate arbitrary superpositions of the two states. To engineer the energy level spacings in a convenient range, the junctions must have capacitances of only a few femtofarads, thus driving the junction sizes to be of the order of 100 nm × 100 nm.

We pattern these circuits at the CNF with nanoscale structures defined with electron-beam lithography integrated with photolithographically defined large-scale features. Our investigations of these circuits will allow us to probe the nature of quantum entanglement between qubits and microwave photons and to investigate novel techniques for reading out the qubit state [4,5].

The junctions are fabricated using the standard double-angle shadow evaporation technique [6], in which a resist bilayer of copolymer and PMMA is used to produce a narrow PMMA airbridge suspended above the substrate. Evaporation of aluminum from two different angles with an oxidation step in between forms a small Al-AlOx-Al tunnel junction from the deposition shadow of the airbridge. We have developed a process for defining these junctions on the JEOL9300 and we perform the aluminum evaporations in a dedicated chamber at Syracuse. We pattern large-scale features using the AutoStep 200, with electron-beam
evaporation of Al and Pd films and CVD deposition of SiO$_2$. Measurements of these circuits are performed in cryogenic systems at Syracuse University, including a custom dilution refrigerator for achieving temperatures near 20 mK.

References:


